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Abstract—A global model describing the convective evaporation of dense and dilute clusters of drops has

been formulated starting from first principles. The volume of the cluster and the number of drops in a

given cluster are fixed and the drops do not move with respect to each other. The model has been tested

for three different drag models and shows less than 10% sensitivity in the prediction of the droplet lifetime.

A thorough parametric study has been performed and the results show that the control parameters are

very different in order of importance for dense and dilute clusters. The initial relative velocity between
drops and gases is a weak control parameter in the 40-1000cms ™! regime.

1. INTRODUCTION

EVAPORATION, ignition and combustion of fuel sprays
in practical systems is influenced by many factors such
as drop characteristics, surrounding gas temperature,
composition and pressure, and the relative velocity
between the spray and the gases. From the point of
view of controlling evaporation, ignition and combus-
tion, it is first very important to understand how the
variation of each one of the above parameters modifies
the phenomenon of interest, and second it is necessary
to identify the regime(s) that is (are) most sensitive to
the variation of a given parameter.

In some of our previous work [1] we have studied
the influence of the above-mentioned parameters
upon evaporation using a model that could equally
describe quiescent evaporation of dense and dilute
sprays. We have further developed a model of convec-
tive evaporation of non-dilute clusters of drops [2]
that yielded results which, if confirmed experimentally,
could be both used to simplify the models utilized to
predict spray processes and also to understand the
controlling parameters during convective spray evap-
oration. In particular, it was predicted that the initial
relative velocity between a cluster of drops and the
ambient flow is a weak control parameter because a
large variation in its value results in relatively small
changes in the evaporation time. The initial surround-
ing gas temperature was found to have a strong
influence in the lower temperature regime, 750-
1500 K, whereas in the higher temperature regime the
influence was weak. Finally, it was also shown that
the drop temperature was transient throughout the
drop lifetime much as in the case of a single isolated
drop 3], but unlike in the case of isolated drops [3],
for dense clusters of drops, nonuniformities in the
drop temperature persisted up to the first third of the
total evaporation time at most. These results were
obtained for a single-component fuel.

The present model is different from that of ref. [2]
in that the new convective evaporation formulation

pertains to any geometrical droplet-cluster shape and
it is equally valid for dense and dilute clusters of
drops. Thus, with this new model we have been able to
identify important aspects of convective evaporation
that pertain to the dense and dilute regimes.

Section 2 presents the new model for convective
evaporation and the results obtained by solving
the model equations are discussed in Section 3.
Conclusions are given in Section 4.

2. PHYSICAL ANALYSIS AND MATHEMATICAL
FORMULATION

The present analysis is for a monodisperse cluster
of drops uniformly distributed within a gaseous
volume, the ensemble of which is called V.. The cluster
volume is itself imbedded in a gaseous control volume,
¥, which is assumed self-similar to V.. The gases
outside the cluster are quiescent. The cluster of drops
is injected into these guiescent gases at velocity uf.
As the drops move, the gases inside the cluster acquire
a velocity u,. For this reason the gases inside the
cluster and outside the cluster are treated differently
and have respective velocities of u, and zero. The
drops in the cluster do not move with respect to each
other but instead they move through the gases as an
entity at velocity uy. Even though there is a net flow
of gases and heat through the surface of the cluster,
these effects are not modeled in detail and instead
only their global influence is considered. As it will be
seen later, this is a very good approximation for non-
dilute clusters where penetration is confined to a very
thin shell. On the other hand for dilute clusters where
penetration will be shown to be substantial, the effect
of this penetration will be appropriately taken into
account by correlations relating the evaporation rate
in convective flows to that in quiescent flow and to
the Reynolds number. For intermediate regimes the
model is still expected to be a good approximation
of the global picture. No detailed fluid model is
attempted here.
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NOMENCLATURE
a radius of the sphere of influence u velocity [em s™']
[cm] v control volume [cm?]
A, transverse area of the cluster [cm?] v, volume of the cluster [cm?]
Ay cross-sectional area of a drop [cm?] X coordinate along the cluster
C non-dimensional evaporation rate, trajectory [cm)
—m/(4np,DR®) Y mass fraction
Cp. drag coefficient for the cluster z non-dimensional internal drop
Cp drag coefficient for one drop coordinate, r/R.
C, specific heat at constant pressure
[cal g ! K™ 1] Greek symbols
Com arithmetic average of C, evaluated 0 non-dimensional temperature,
at T, and T,, [cal g7 'K~ 1] CpT/Ly,
D gas diffusivity [em?s™!] u viscosity [gcm ™! s71]
F,, force of the evaporating gas v kinematic viscosity, u/p [em? s~ 1]
[gems™ 2] p density [g cm ™3]
Fee cluster-evaporation force [g cm s~ 2] ¢(¢,) air/fuel mass ratio (stoichiometric)
Fy surface force on V [g cms™?] v .
F, force which is due to small pressure ¢(¢y) oxy .gen'/ fuel mass ratio
. 2 (stoichiometric)
gradients g cm s~ °] A blowi be
L latent heat of evaporation [cal g~ !] owing nUMDET, pybevap/(Pyath)-
l‘,p penetratipn distance [—me] Subscripts
m evaporation rate [g s~ '] )
m mass [g] a at the edge of the sphere of influence
N total number of drops in V, bn a]t t}:e normal boiling point
n drop number density in ¥, [cm ™3] M cluster
. . d drop
r radial coordinate [cm] i
R drop radius [cm] ;vap :valpora ton
R, non-dimensional drop radius, R/R° ue
R, non-dimensional radius of the g gas.
. 0 1 liquid
sphere of influence, a/R . lati
Re Reynolds number, 2Ru,/v :f ative o
R characteristic dimension of the s rop suriace
cluster [cm] v vapor.
T t t K .
; t?::f?g; ure [K] Superscripts
0 initial condition.

The main assumptions regarding the liquid phase
and the gas phase have been described in detail
elsewhere [2] and thus will not be discussed here.
What is of interest here, which will be discussed in
detail, is the momentum transfer between drops
and gases. The liquid-phase formulation and the
evaporation law are treated in the same manner as
in ref. [2] and the formulation of the quiescent-
evaporation situation is that of ref. [1]. In that
formulation [1], each drop of the cluster is surrounded
by a sphere of influence whose radius is the half
distance between the centers of two adjacent drops.
The ensemble of these spheres of influence and the
space between them constitutes V.. Quiescent
evaporation of each drop inside its own sphere of
influence is described using quasi-steady diffusion
differential equations for species and heat; these
equations are coupled to the liquid phase equations

through boundary conditions at the drop surface. The
solutions of these differential equations are used in
an integral set of equations for the entire cluster
volume that describe heat, mass and species conser-
vation. The global equation of state completes the
formulation of the quiescent situation. To describe
convective evaporation, the correlation of ref. [2]
between the quiescent evaporation rate, the evapor-
ation rate in convective flow and the Reynolds number
will be used. The Reynolds number here is based
upon the radius of each drop and the relative velocity
U, = Uy — Uy (uq > uy is assumed). The emphasis of the
following model is upon the accurate calculation of
u, for both dense and dilute sprays.

We make the assumption that the momentum
transfer between drops and gases can be treated
on a local basis using, consistent with the global
formulation, the assumption of small pressure gradi-



The details of the convective evaporation of dense and dilute clusters of drops

ents. Moreover, momentum exchange between the
two phases is assumed to have three basic com-
ponents: (i) transfer due to evaporation, (ii) transfer
by fluid flow interaction in the form of a drag
coefficient, and (iii) transfer due to small pressure
gradients. This splitting allows the model to yield the
correct limits in the cases of no evaporation (rii — 0),
no slip (u,—0) and/or quiescent ambient gases
(u, = 0).

Since volume forces are neglected in this model, the
momentum equation for the control volume V is

d
a—i[pgugV+ Nmguy] = Fy. 83

This yields

du du .
ng—Ef + N[md —d—tﬂ — iy — u,)} =F (2
with
i dma_1d
mE"% - th(p,V). 3)

The surface force Fy is due to any fluid dynamic
deflection of the outer gas by the drop cluster acting
as an entity. (Far from the cluster, the outer gas is
quiescent.)

Now, on a local basis, inside V¥, the momentum
equation for the gases is

d i
pgzuf = n[Fev + i’pgAdCD(ud - ug)z + Fx:] (4)

where the right-hand side represents the interaction
volume force of the drops acting on the gas. This
force is split into three components according to
assumptions (i)-(iii) above. Forces Fy, F, and F,, in
equations (2) and (4) will be determined by requiring
consistency with the three limits mentioned above.

In the limit ri— 0, equation (4) is consistent if
F., ~ mis assumed, according to the definition of F,,.

The u, — 0 and no-slip limits can be studied from
the equation for the relative velocity which is derived
by subtracting from du,/dt, obtained from equation
(2), du,/dt, obtained from equation (4)

S~ LUFYN 4 i, — (14 mma/p NPy + F)]
d

— 3l + b /rm Ao ®

The u, = 0 situation is taken as the initial condition.
Physically, since only the drops are moving, Fy = 0
when u, = 0, according to the definition of Fr. When
u, -0, du,/dt — 0 and also F,, = 0. This means that
F,, ~ u,. Additionally, equation (5) yields in this limit

Fy = F7/IN(1 + nmy/p,)]. (6

Equation (6) is interpreted as the influence of the
surface force Fy upon the gas velocity through the
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pressure changes in V.. Now, the no-slip limit repre-
sents the long time behavior for dense sprays where
the entire cluster contained inside V, acts as one
big drop. Thus, in this limit it is expected that the
momentum equation will have the following form

1
ipgAc CDcurz: (7)

du
(ng; + de)a_t' = Fcev -
where u, = uy = u,.
Assuming F,, = Aru, and comparing term by term
equation (7) with the drop momentum equation

U _ (1 — 1) —

Mg

H
ip gAdCD“?Z

+ nmgFr/[N(pg + nmy)] ®

that has been obtained from a linear combination of
equations (2) and (4), one concludes that

Fcev = mcud(l - j') (9)

where rit, = Nm. But when u, — 0, from equations (7)
and (8)
Fr = Feoy = 29 Aot (10)
Since Fy = 0 for u, = 0, this implies A = 1. Then using
equation (10), the simplest generalization for Fy is
1
FT = '—EpgAcCDcugud (1 1)
because it satisfies both limits u, — 0 and u, — 0. This
formula implies an effective cloud area of A (1, /uy), the
velocity ratio being equal to the non-slip displacement
gas flux divided by the total gas flux. Also note
that the choice A = 1 is consistent with the literature
[4, 5, 7, 9] which commonly represents the effect of
evaporation (blowing) on drop drag as a reduction in
the drag coefficient rather than an additional thrust

term. Thus, the two momentum equations that will
be solved here are

du, . 1
d_l:‘ = ——n[mu,/p, + 5[1 + pg/(nmd)]AdCDufz]

(12)

du 1
my “&‘f = - E[pgAdCDug

nmy )
+ ot md)p,asudCDcAch]. (13)

Here Cy, is based upon a Reynolds number using u,
and the length scale [A(u, /uz)/n]°>.

In general Cyp, depends upon the Reynolds number
and the evaporation rate as well as R,/R,. However,
here we neglect ‘blockage’ effects and thus Cp, depends
only upon Re and m. In contrast, Cp, depends only
upon the Reynolds number. In order to assess the
sensitivity of the model to the drag term, three
different drag models will be compared. The first one
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is that of Eisenklam et al. [4] who correlated Cp, to
the drag coefficient in the absence of evaporation as
follows:

CD = CD,MO/[I + Cpm(’l;a -

L)/ Lea]  (14)

Here we take

Cp,_, = 24[1 + 0.0545Re

+ 0.1(1 — 0.03Re)\/Re)/Re (15)
which is valid for | < Re < 100 [5]. A similar model
has already been used in calculations of the ignition
of dense sprays in convective flows [6].

The second drag coefficient model that will be used
here is due to Yuen and Chen [7]. The experimental
results of ref. [7] show, for a variety of liquids, that
the classical drag expression is satisfied providing one
uses the following Reynolds number
Paal T 2R

Re* =
BAT)

(16)

where the denominator is the gas viscosity evaluated
at

T, =T+ (T — T3 (17)
using the formula of Wilke [8].

Finally, the recent results of the analysis of Cliffe
and Lever [5] will be used to express Cy, as a function
of both the Reynolds number and the blowing
number, A, which is defined in ref. [5] as the ratio of
the radial gas velocity at the drop surface divided by
u,. Here we generalize this definition of A by also
taking into account the ratio of the gas density at the
surface to the external gas density. The drag coefficient
is given in ref. [5] both in tabular and curve form for
1 <Re< 100 and 0< A < 3. These results show
significant departures both from the Stokes drag
coefficient and the low Reynolds number solution of
Dukowicz [9] as a function of Re and A. A curve fit
of the tabular results of Cliffe and Lever [5] was used
in the calculations to find the solutions for «, and u,
from equations (12) and (13).

These equations, along with the liquid phase and
the other gas phase equations, were solved using the
Gear integrator. The algorithm for the solution has
been described elsewhere [2] and thus will not be
discussed here. We note that in contrast with the
formulation of ref. [2] which was relevant to non-
dilute sprays but was questionable for dilute sprays,
the present model is inherently valid for both dense
and dilute sprays.

An interesting feature that is an indication of how
much the convective flow affects the evaporation of
the drops is the extent of external flow penetration
inside the cluster. This is described here by a pene-
tration distance which is estimated in coordinates
fixed with the cluster. In these new Lagrangian
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coordinates equation (12) becomes

urgdi = ___nl:n'm,/p, + %[l + p,/(nmd)]AdCD“,Z]-

x
(18)

The relaxation distance L, which is here interpreted
as a penetration distance, is calculated at each given
time by identifying the location where u, = 0. When
time is fixed i, R, p, and Re are considered constant
and thus

_2lnf1 + ulppy/mg + MALCp/(2n)]

L
? {(py/ms + MA,Cp

{19)

The ratio of L, divided by a characteristic cluster
dimension is an indication of the important phen-
omenon controlling evaporation. If this ratio is larger
than unity, evaporation is convection controlled,
whereas if this ratio is very small compared to unity,
evaporation is diffusion controlled. Between those
values there exists an intermediary regime where both
convection and diffusion are important.

Note that the concept of the penetration distance
is used here only as a criterion to decide the regime
in which the cluster evaporates and it is not part of
the fluid dynamics model which is itself self-contained.
That is to say that the same equations with the same
boundary conditions are solved independent of the
value of L.

3. DISCUSSION OF RESULTS

Interest is focused here on several aspects of drop-
cluster convective evaporation. First, we want to
study the sensitivity of the equations to the model
chosen for Cp, as explained above. Second, we want
to determine the influence of u? upon the evaporation
of both dense and dilute sprays. Further, we will study
the influence of TG, TS, and Y3,, upon convective
evaporation. Finally, we would like to ascertain
whether a transient, uniform internal-drop-temper-
ature description is sufficient in the case of dense
sprays, as different from dilute sprays. Initial evidence
of this possibility has already been mentioned else-
where [2], but the study was not conclusive because
the model was questionable for dilute sprays and thus
a reliable comparison could not be made.

Qur calculations were performed for n-decane
{¢, = 15.7) and the values used for the thermophysical
properties are the same as those in Table 1 of ref. [2].
Also, throughout the calculations R® = 2 x 10”3 cm
and the characteristic dimension of the cluster is taken
to be R = 10cm,

In all our calculations we have arbitrarily taken
u? = u$, although any other combination between
u?, u3 and uf could be taken. The physical interpreta-
tion of the following results is thus related to the
entrainment by and the relaxation of a cluster of
evaporating drops introduced into quiescent gases.
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F1G. 1. Dependence of the evaporation time upon the air/fuel mass ratio for several drag models and
several values of the initial relative velocity between the drops and the gases.

By taking u? < u$ one would study instead a situation
where a cluster of drops is introduced into a convective
flow. Obviously, many possibilities exist and we are
here studying only one of them.

In Fig. 1 we display the evaporation time, defined
as the time when R, = 0.04, vs the air/fuel mass ratio
for the three drag models tested here. It is remarkable
to notice how close the results are for all the drag
models over the entire range of ¢. In fact, if we had
chosen a time scale such as to include the results from
our richest case, ¢ = 0.157, the three curves of Fig. 1
would have been indistinguishable. When the various
evaporation times are compared for a given ¢, the
maximum uncertainty between the results is 10%.
This is certainly as good or better than experimental
uncertainties in the measurement of drag coefficients.
Thus, we conclude that our model is insensitive to
the drag model utilized for the calculations.

Further, in Fig. 1 we can see that similarly to
quiescent evaporation [1], for convective evaporation,
the evaporation time in the dense-cluster regime is
larger than that in the dilute-cluster regime. As ¢
increases an asymptote is reached which corresponds
to the situation of the isolated drop. Unlike the results
previously presented that were the extension of a
model applicable only to non-dilute sprays [2], we
do not see here an increase in t,,,, in the dilute cluster
regime. In fact, when the plot of Fig. 2, which shows
the penetration ratio vs R,, is interpreted together
with that of Fig. 1, one can see that as soon as a
cluster of drops evaporates in the convective—diffusive
regime or the convective regime, the evaporation time
will be very close to that of an isolated drop exposed
to the same initial conditions. This result is rather
intuitive since, when they are present, convective
effects always dominate diffusive effects during evap-
oration. For lower values of u® diffusive-dominated
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F1G. 2. Variation of the penetration ratio with the residual
radius of the drops in a cluster, for clusters having various
air/fuel mass ratios.

evaporation becomes more important and thus the
convective—diffusive and convective regimes are
reached at larger values of ¢, as shown in Fig. 3. The
result is that the evaporation time reaches the isolated
drop limit for larger values of ¢, as shown in Fig. 1.
We also notice, in agreement with the results of ref.
[2], that u? is a relatively weak parameter for the
control of evaporation. However, whereas in ref. [2]
this conclusion was obtained with a different model
for non-dilute clusters of drops only, and inferred for
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the dilute clusters, here our conclusion holds over the
entire range of ¢. Figure 1 shows that by increasing
u? by a factor of 25, t,,, can be decreased by at most
33%, this maximum being obtained for the most
dilute cluster situation. In contrast, for the most dense
cluster situation, t.,,, decreases only by 15% when
u? is increased by a factor of 25. The following results
will show why the relative velocity is a weaker control
parameter for dense clusters when compared to dilute
clusters.

Since the time scale for evaporation varies with ¢
and since this is a two-phase problem where the
interest is focused on the behavior of the evaporating
drops, it is here relevant to scale the dependent
variables with the residual radius of the drops rather
than with time. In other words, starting with given
initial conditions we look for trends that might be
the same or different at fixed residual droplet mass.
Plots of the same quantity vs time, while being
interesting, would not provide the same insight into
the physics of the situation.

The plots of the dependent variables shown in Figs.
4-7 are useful in building a better understanding of
the differences between the evaporation of a dense
cluster and that of a dilute cluster of drops. Figure 4
shows that the relative velocity of a dense cluster of
drops decreases faster as a function of R, than that
of a dilute cluster of drops and Fig. 5 shows that the
opposite is true for the drop velocity. The reason for
this is that when a denser cluster of drops moves
through gases it exposes a greater surface area to the
flow because the number of drops is larger and thus
there is a stronger interaction between the gases and
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F1G. 5. Variation of the drop velocity with the residual drop
radius for clusters of various air/fuel mass ratio.

the drops. The result is a faster relaxation as shown
in Fig. 4. In contrast, the drop velocity depends on
the inertial effect of the cloud. Because a denser cloud
has a higher mass it slows down less than a more
dilute cloud.

As expected, the Reynolds number variation shown
in Fig. 6 is similar to the variation of «,. In agreement
with the results of Dwyer and Sanders [10] for
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FIG. 7. Variation of the oxygen/fuel equivalence ratio with
the residual drop radius for clusters of various air/fuel mass
ratio.

isolated drops, we find here that the Reynolds number
decreases very fast. Table 1 shows, for a selected range
of cluster drop densities, the residual mass and the
fraction of the total evaporation time when Re = 1 is
reached during evaporation.

Consistent with the results discussed above, the
oxygen/fuel mass equivalence ratio, displayed in Fig.
7 vs Ry, is larger at the beginning of evaporation and
decreases as more fuel vapor is added to the gases.
For the fuel-rich (¢ < 15.7) and the dense cluster

Table 1. Conditions at Re =1 for various air/fuel mass
ratios. Initial conditions: Tg, = 1000K; T% =350K;

Ye.=3x10"3 u§.= 200cms ™!
n
¢ (cm‘3) t(Re = 1)/tevap md(Re = 1)/"'2
276.0 48 0.50 0.27
1.57 99 x 103 047 033
0.314 5.0 x 10* 0.11 0.68

cases, both the above effect and the fact that the
relative velocity decreases fast result in a situation
where the drop evaporates most of its lifetime in a
fuel-rich environment. At stoichiometric (¢ = 15.7)
and lean (¢ > 15.7) conditions the drops evaporate
during their entire lifetime in an oxygen-rich environ-
ment. These observations are very important in terms
of the determination of the ignition time for clusters
of drops [6].

Figure 8 shows the variation of the evaporation
time with T,. From the plots displayed on the figure
it is obvious that both curves present the same trends
(ie. t...p, decreases with increasing Tg, in the lower
TS, regime followed by an asymptotic behavior as
T, increases further); however, for dense clusters the
curve is shifted towards larger times and a higher
T2, regime. The shift in the position of the curves as
one moves to denser clusters is due to the higher
thermal inertia of the cluster. In the lower T, regime
the decrease of t,.,, with increase in T, is intuitively
well understood because a larger TJ, implies a higher
heat transfer to the drops which enhances evapora-
tion, thereby reducing the lifetime of the drop. In the
higher T, regime, because of the larger ambient
temperature the gas density is lower, and since the
pressure is the same in all cases, this means that heat
transfer to the drops will also be the same. This
explains the asymptotic behavior in the high T§,
range.

The results obtained for T, = 2000K were also
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used to investigate the evolution of the internal
temperature profile of the drop for both dense and
dilute clusters of drops. In this case T9, — T§, is the
largest, thereby inducing the largest initial temper-
ature gradients inside the drop. The initial drop
temperature is arbitrarily assumed uniform. Since this
is not necessarily a solution of the heat conduction
equation with the associated boundary conditions
[2], a non-uniform profile at R, = 0.999 that now
satisfies both the conduction equation and the boun-
dary conditions can in fact be considered as the true
initial conditions. We notice that the viscosity of the
fuel is here large enough to make the zero-Hill-vortex-
strength limit acceptable [3] because the ratio of the
characteristic time for circulation to the characteristic
time for heat-up, [(4;Ap,/C,.)]/(iw/p)], is 3.53 x 1072
(values of the properties are given in Table 1 of ref.
[2]). Thus the heating time is independent of the
circulation time and the use of the spherically sym-
metric heat conduction equation is justified. What is
of interest here is to compare our results with those
of ref. [3] in which it was found using a finite-Hill-
vortex-strength model that for an isolated single-
component fuel droplet the internal drop temperature
was transient and nonuniform throughout the droplet
lifetime. Thus we will be looking here at the relaxation
time for 6, in the case of dense and dilute sprays and
comparing it with the results of ref. [3]. Because of
our somewhat artificial initial condition we focus here
only on relative and qualitative behavior. The non-
dimensional drop temperature is plotted in Fig. 9 vs
an internal, non-dimensional, drop coordinate at
various residual drop sizes for both a dense and a
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FI1G. 9. Variation of the non-dimensional internal drop

temperature with a non-dimensional radial coordinate at

various residual drop sizes for a dense and a dilute cluster
of drops.

dilute cluster. These plots show that the internal
temperature is transient throughout the drop lifetime
for both dense and dilute clusters. However, in the
case of the dense cluster the temperature becomes
uniform extremely fast whereas in a dilute cluster
the drops experience a non-uniform temperature
relatively for a longer time. For the situations studied
here the internal drop temperature becomes uniform
in the case of the dense cluster when t/t,,,, =
1.0 x 1072 and the residual mass is 83% whereas
for a dilute cluster the corresponding numbers
are 2.6 x 107! and 70%. We conjecture that the
reason for this is that the evaporation rate of a
dense cluster is slower [e.g. for R, = 0.54 the ratio
C(¢ =0.314)/C(¢ =94.2) is 0.56] and since non-
uniformities in @, are the result of a competition
between rate of heat conduction and rate of evapora-
tion, the former now becomes faster than the latter,
yielding a uniform 6,. Thus, according to these results,
for the purpose of studying dense clusters of single-
component drops one could utilize a uniform internal
drop-temperature model without any penalty in
accuracy. Further studies must address the question
of the penalty, if any, for using a uniform internal
drop temperature in the case of dilute clusters.
Although our results for dilute clusters present trends
different from those of ref. [3] regarding the relaxation
time for 4, to a uniform condition, in agreement with
ref. [3] we found that 6, is transient up to the end of
the droplet lifetime. However, the rate of increase in
6, during the latter part of the drop’s lifetime is rather
small and sometimes negligible compared to its value
during the initial portion of droplet evaporation.
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Results showing the variation of t,,,, with T, are
presented in Fig. 10 for two air/fuel mass ratios. For
dense clusters the thermal inertia of the liquid phase
is larger than in the case of dilute clusters and thus
it takes longer to heat up and evaporate drops starting
at the same initial drop temperature. As the normal
boiling point is approached the two curves converge,
as expected, because then the evaporation time
depends basically upon the evaporation rate rather
than the heating rate. It is worthwhile noting that we
find here a strong dependence of t,,,, upon T;’s for
dense clusters in agreement with the results of ref. [2]
which were obtained with a different convective
evaporation model, and a weak, linear, dependence
for dilute clusters. The reason for this is that, in
contrast to the dense cluster situation, in the case of
the dilute cluster evaporation is mostly convection
controlled or convection—diffusion controlled and
thus t.,, is close to the isolated drop value.

In Fig. 11 we display results showing the variation
of the evaporation time with Y2, for dense and dilute
clusters of drops. For the dense cluster case
(¢ = 0.314), Y3, is increased up to the value where
saturation is encountered at the initial condition
whereas for the dilute cluster case Y2, is increased
until n becomes of the order of 1cm™3. Again, in
agreement with our previous results [2] obtained
for non-dilute sprays with a different convective
evaporation model, we find here a linear decrease in
tysp With increasing Y2,,. This is easily understood
since for fixed ¢, as Y2, increases, n decreases, so
that for the same initial temperature and velocity
conditions the thermal mass of the cluster is lower.
Since evaporation occurs mostly in the diffusion-
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F1G. 11. Dependence of the evaporation time upon the initial
mass fraction of fuel vapor in the gas phase for a dense and
a dilute cluster of drops.

controlled regime according to the results of Figs. 1
and 2, t,,,, is shorter. The situation is different for
dilute sprays where evaporation occurs mostly in the
convection-controlled regime and thus the evapora-
tion time is close to the individual drop value. For
this reason, t.,,, is rather insensitive to Y2,, for dilute
clusters.

4. SUMMARY AND CONCLUSIONS

The model of convective drop-cluster evaporation
developed here is inherently valid for both dense and
dilute clusters and thus it is well suited for the
comparative study of droplet evaporation in these
two different configurations. As the air/fuel mass ratio
increases from values for very dense to those for very
dilute clusters, several distinctive evaporation regimes
are identified. Very dense clusters were found to
evaporate in a diffusion-controlled regime whereas
very dilute clusters were found to evaporate in a
convection-controlied regime. Between these two
regimes there is a convection—diffusion regime where
both phenomena are important in determining the
lifetime of the cluster. These results were found to be
insensitive to the drag model used. In fact, results
obtained with three different drag models showed less
than 10% variation in the evaporation time.

A parametric study has been performed in order
to identify important parameters controlling drop-
cluster evaporation in different regimes. Thus, it was
found that the initial relative velocity between the
gases and drops is a weak parameter both in the
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dilute and dense regimes. Furthermore, it has been
found that the initial ambient surrounding temper-
ature is a strong control parameter in the lower values
of the TS, regime and a weak control parameter in
the higher values of the T?, regime. Although the
variation of the lifetime of the cluster with changes in
initial ambient temperature is the same for dense and
dilute clusters, because of the larger thermal inertia
of the dense cluster, the corresponding curve is
substantially shifted towards larger times and higher
temperatures. Moreover, the study of the sensitivity
to variations in the initial ambient temperature was
also used to assess the duration of the relaxation time
for the internal droplet temperature to a uniform
condition. Given uncertainties due to the fact that we
started with an arbitrary, uniform internal drop
temperature that was not a solution of our equations,
and that very shortly became nonuniform as a result
of now satisfying our equations and boundary condi-
tions, and that what we followed was the relaxation
of this temperature profile, our conclusions are that
the relaxation time is short for dilute clusters and
very short for dense clusters. However, transients
persist during most of the drop lifetime.

The initial drop temperature has been found to be,
for dense clusters, a strong contro! parameter in the
lower T, regime and a somewhat weaker parameter
in the higher TJ, regime. In contrast to dense clusters,
for dilute clusters the initial drop temperature is a
very weak parameter in the entire regime of interest.
As the initial drop temperature approaches the normal
boiling point both curves for dense and dilute curves
converge. These effects are strongly related to the
thermal inertia of the spray.

Similarly, it has been found that for a fixed air/fuel
mass ratio, the evaporation time of a cluster of drops
is very insensitive to the initial mass fraction of fuel
vapor in the ambient gases if the cluster is dilute and
that the evaporation time decreases linearly with
increasing Y2, for dense clusters. The latter effect is
due to the fact that as ¢ is fixed and Y3,, increases,
less liquid fuel is present initially in the cluster.

To summarize, for dense sprays the control para-
meters are in order of importance: the initial drop

J. BELLAN and K. HARSTAD

temperature, mostly in the low regime; the initial
surrounding gas temperature in the low regime; the
initial mass fraction of fuel vapor in the gas phase;
and the initial relative velocity between drops and
gases. In contrast, for dilute sprays the control para-
meters are in order of importance: the initial temper-
ature of the surrounding gas in the very low regime;
the initial relative velocity between drops and gases;
the initial drop temperature; and the initial mass
fraction of fuel in the gas phase.
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DETAILS DE L’EVAPORATION CONVECTIVE DE GRAPPES DENSES OU DILUEES
DE GOUTTES

Résumé—Un modéle global décrivant I'évaporation convective de grappes denses ou diluées de gouttes a
été formulé 4 partir des premiers principes. Le volume de la grappe et le nombre de gouttes dans une grappe
sont fixés et les gouttes ne se déplacent pas les unes par rapport aux autres. Le modéle a été essayé pour
trois modéles différents de trainée et il montre une sensibilité inférieure 4 10% dans le calcul de la durée
de vie de la gouttelette. Une étude paramétrique est conduite et les résultats montrent que le paramétres
de contrdle sont trés différents en ordre d’importance pour les grappes denses et diluées. La vitesse initiale
relative entre gouttes et gaz est un paramétre peu important dans le domaine 40-1000cms™ .
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DIE EINZELHEITEN DER OBERFLACHENVERDAMPFUNG VON DICHTEN UND
GELOSTEN TROPFENVERBANDEN

Zusammenfassung—Ausgehend von den Grundgleichungen wurde ein umfassendes Modell zur Be-
schreibung der Oberflichenverdampfung von dichten und geldsten Tropfenverbidnden formuliert. Das Ver-
bundvolumen und die zahl der tropfen in einem gegebenen verbund sind fest, die tropfen bewegen sich
relativ zueinander nicht. Das Modell wurde mit drei verschiedenen Reibungsmodellen getestet, wobei sich
ein EinfluB von weniger als 10% auf die vorausberechnete Lebensdauer der Tropfen ergab. Eine sorgfiltige
Parameterstudie wurde durchgefiihrt. Die Ergebnisse zeigten, daB die den Vorgang kontrollierenden
Parameter fiir dichte und geloste Verbinde sehr unterschiedlich hinsichtlich ihrer Wichtigkeit sind. Die
Anfangs-Relativgeschwindigkeit zwischen den Tropfen und dem Gas ist im Bereich 40-1000cms~' von
geringem EinfluB.

OCOBEHHOCTU KOHBEKTHBHOI'O MCITAPEHHMS IMTJIOTHBIX U PA3SPEXXEHHBIX
KJIACTEPOB KATIEJb

Anorauns—CdopmynnpopaHa o606LICHHAA CXeMa KOHBEKTHBHOTO MCMAPEHHS IUIOTHBIX M Pa3peXeH-

HbIX KJacTepoB Kanejb. O6beM KacTepa M KOJHHECTBO Kamejib B HEM 3alaHbl, KalUTH HEMOIBHKHBI

OTHOCHTeNLHO ApYr Apyra. Takas cxema mpoBepeHa [/ TPEX pas/MYHBIX MOJEREH COMPOTHBJICHMS,

MOKa3aHo, 4TO owKbKa NpH OLEHKE BPEMEHH XH3HU Kall/lM COCTaBJfeT MeHee 10%. PesynbraTsl noka-

3bIBAIOT, YTO ONPECIAKOIME TAPAMETPEI, KOTOPbIE CYLIECTBEHHBI JUIS AAHHOTO NPOLECCa, Pas3/IHYHbI 110

MOPAAKY BEJHYMHBLI JUIA TJIOTHBIX M Pa3pekeHHbIX KnacTepoB. HauanbHas OTHOCHTENbHas CKOPOCTb
Kaneb U ra3oB c1abo BiuseT Ha pe3yabTaThl B AManazone 40-1000 cMm. ¢~ 1.
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