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Abstract-A global model describing the convective evaporation of dense and dilute clusters of drops has 
been formulated starting from first principles. The volume of the cluster and the number of drops in a 
given cluster are fixed and the drops do not move with respect to each other. The model has been tested 
for three different drag models and shows less than 10% sensitivity in the prediction of the droplet lifetime. 
A thorough parametric study has been performed and the results show that the control parameters are 
very different in order of importance for dense and dilute clusters. The initial relative velocity between 

drops and gases is a weak control parameter in the 40-1OOOcm s-i regime. 

1. INTRODUCTION 

EVAPORATION, ignition and combustion of fuel sprays 
in practical systems is influenced by many factors such 
as drop characteristics, surrounding gas temperature, 
composition and pressure, and the relative velocity 
between the spray and the gases. From the point of 
view of controlling evaporation, ignition and combus- 
tion, it is first very important to understand how the 
variation of each one of the above parameters modifies 
the phenomenon of interest, and second it is necessary 
to identify the regime(s) that is (are) most sensitive to 
the variation of a given parameter. 

In some of our previous work [l] we have studied 
the influence of the above-mentioned parameters 
upon evaporation using a model that could equally 
describe quiescent evaporation of dense and dilute 
sprays. We have further developed a model of convec- 
tive evaporation of non-dilute clusters of drops [2] 
that yielded results which, ifconfirmed experimentally, 
could be both used to simplify the models utilized to 
predict spray processes and also to understand the 
controlling parameters during convective spray evap- 
oration. In particular, it was predicted that the initial 
relative velocity between a cluster of drops and the 
ambient flow is a weak control parameter because a 
large variation in its value results in relatively small 
changes in the evaporation time. The initial surround- 
ing gas temperature was found to have a strong 
influence in the lower temperature regime, 750- 
1500 K, whereas in the higher temperature regime the 
influence was weak. Finally, it was also shown that 
the drop temperature was transient throughout the 
drop lifetime much as in the case of a single isolated 
drop [S], but unlike in the case of isolated drops [3], 
for dense clusters of drops, nonuniformities in the 
drop temperature persisted up to the first third of the 
total evaporation time at most. These results were 
obtained for a single-component fuel. 

The present mode1 is different from that of ref. [2] 
in that the new convective evaporation formulation 

pertains to any geometrical droplet-cluster shape and 
it is equally valid for dense and dilute clusters of 
drops. Thus, with this new model we have been able to 
identify important aspects of convective evaporation 
that pertain to the dense and dilute regimes. 

Section 2 presents the new model for convective 
evaporation and the results obtained by solving 
the model equations are discussed in Section 3. 
Conclusions are given in Section 4. 

2. PHYSiCAL ANALYSIS AND MATHEMATiCAL 

The present analysis is for a monodisperse cluster 
of drops uniformly distributed within a gaseous 
volume, the ensemble of which is called V,. The cluster 
volume is itself imbedded in a gaseous control volume, 
V, which is assumed self-similar to V,. The gases 
outside the cluster are quiescent. The chtster of drops 
is injected into these quiescent gases at velocity ui. 
As the drops move, the gases inside the cluster acquire 
a velocity us. For this reason the gases inside the 
cluster and outside the cluster are treated differently 
and have respective velocities of uI and zero. The 
drops in the cluster do not move with respect to each 
other but instead they move through the gases as an 
entity at velocity ud. Even though there is a net flow 
of gases and heat through the surface of the cluster, 
these effects are not modeled in detail and instead 
only their global influence is considered. As it will be 
seen later, this is a very good approximation for non- 
dilute clusters where penetration is confined to a very 
thin shell. On the other hand for dilute clusters where 
penetration will be shown to be substantial, the effect 
of this penetration will be appropriately taken into 
account by correlations relating the evaporation rate 
in convective flows to that in quiescent flow and to 
the Reynolds number. For intermediate regimes the 
model is still expected to be a good approximation 
of the global picture. No detailed fluid model is 
attempted here. 
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NOMENCLATURE 

radius of the sphere of influence 

Ccml 
transverse area of the cluster [cm21 
cross-sectional area of a drop [cm’] 
non-dimensional evaporation rate, 
-ri1/(4np,DR’) 

drag coefficient for the cluster 
drag coefficient for one drop 
specific heat at constant pressure 
[cal g-l K-r] 
arithmetic average of C, evaluated 
at Tgs and T,, [cal g- ’ K-‘1 
gas diffusivity [cm’s_ ‘1 
force of the evaporating gas 
[gem s-‘1 
cluster-evaporation force [g cm s-‘1 
surface force on V [g cm s-‘1 
force which is due to small pressure 
gradients [g cm s-‘1 
latent heat of evaporation [cal g- ‘1 
penetration distance [cm] 
evaporation rate [g s-‘1 

mass Cd 
total number of drops in V, 

drop number density in V, [cme3] 
radial coordinate [cm] 
drop radius [cm] 
non-dimensional drop radius, R/R0 
non-dimensional radius of the 
sphere of influence, a/R0 

Reynolds number, 2RurJv 
characteristic dimension of the 
cluster [cm] 
temperature [K] 
time [s] 

u velocity [cm s-‘1 
V control volume [cm31 

v, volume of the cluster [cm”] 
X coordinate along the cluster 

trajectory [cm] 
Y mass fraction 
Z non-dimensional internal drop 

coordinate, rjR. 

Greek symbols 
e non-dimensional temperature, 

C,, TILb” 
P viscosity [g cm- ’ s-‘1 

V kinematic viscosity, p/p [cm* s- ‘1 

P density [g cm - 3] 
4(&) air/fuel mass ratio (stoichiometric) 

#(&) oxygen/fuel mass ratio 
(stoichiometric) 

A blowing number, P~A,.~/(P~.~,). 

Subscripts 

Lr 
at the edge of the sphere of influence 
at the normal boiling point 

zl 
cluster 
drop 

evap evaporation 
F fuel 

f 
gas 
liquid 

r relative 
S drop surface 
V vapor. 

Superscripts 
0 initial condition. 

and the gas phase have been described in detail 
The main assumptions regarding the liquid phase 

elsewhere [2] and thus will not be discussed here. 
What is of interest here, which will be discussed in 
detail, is the momentum transfer between drops 
and gases. The liquid-phase formulation and the 
evaporation law are treated in the same manner as 
in ref. [S] and the formulation of the quiescent- 
evaporation situation is that of ref. Cl]. In that 
formulation [ 11, each drop of the cluster is surrounded 
by a sphere of influence whose radius is the half 
distance between the centers of two adjacent drops. 
The ensemble of these spheres of influence and the 
space between them constitutes V,. Quiescent 
evaporation of each drop inside its own sphere of 
influence is described using quasi-steady diffusion 
differential equations for species and heat; these 
equations are coupled to the liquid phase equations 

solutions of these differential equations are used in 
an integral set of equations for the entire cluster 

through boundary conditions at the drop surface. The 

volume that describe heat, mass and species conser- 
vation. The global equation of state completes the 
formulation of the quiescent situation. To describe 
convective evaporation, the correlation of ref. [2] 
between the quiescent evaporation rate, the evapor- 
ation rate in convective flow and the Reynolds number 
will be. used. The Reynolds number here is based 
upon the radius of each drop and the relative velocity 
u, = Us - us (u,, > u1 is assumed). The emphasis of the 
following model is upon the accurate calculation of 
u, for both dense and dilute sprays. 

We make the assumption that the momentum 
transfer between drops and gases can be treated 
on a local basis using, consistent with the global 
formulation, the assumption of small pressure gradi- 
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ems. Moreover, momentum exchange between the 
two phases is assumed to have three basic com- 
ponents: (i) transfer due to evaporation, (ii) transfer 
by fluid Ilow interaction in the form of a drag 
coefficient, and (iii) transfer due to small pressure 
gradients. This splitting allows the model to yield the 
correct limits in the cases of no evaporation (& -+ 0), 
no slip (u, -+ 0) and/or quiescent ambient gases 

(u, + 0). 
Since volume forces are neglected in this model, the 

momentum equation for the control volume V is 

&p$ + Nm,u,] = FT. U) 

This yields 

p,V$ + N m, ‘2 - tf& - uJ = FT (21 1 
with 

The surface force FT is due to any fluid dynamic 
deflection of the outer gas by the drop cluster acting 
as an entity. (Far from the cluster, the outer gas is 
quiescent.) 

Now, on a local basis, inside V,, the momentum 
equation for the gases is 

~8% = n Fe, + ;~$l.,Wc, - up)2 + F, 1 (4) 

where the right-hand side represents the interaction 
volume force of the drops acting on the gas. This 
force is split into three components according to 
assumptions (i)-(iii) above. Forces t;;, Fz and F,, in 
equations (2) and (4) will be determined by requiring 
consistency with the three limits mentioned above. 

In the limit I -+ 0, equation (4) is consistent if 
Fe, _ tG is assumed, according to the definition of F,... 

The ug + 0 and no-slip limits can be studied from 
the equation for the relative velocity which is derived 
by subtracting from du,/dt, obtained from equation 
(2), du,/dt, obtained from equation (4) 

du,= 1 
dt $4/N + fiu, - (1 + nm&,XF,, + FJI 

- !pE1 + ~~/(~m~)lA~C~~~. (5) 

The ug = 0 situation is taken as the initial condition. 
Physically, since only the drops are moving, FT = 0 
when u1 = 0, according to the definition of FT. When 
II, + 0, du,fdt -+ 0 and also F,, = 0. This means that 
F fV _ u,. Additionally, equation (5) yields in this limit 

EX = %‘CN(I + mhQ1. (61 
Equation (6) is interpreted as the influence. of the 
surface force FT upon the gas velocity through the 

pressure changes in I$. Now, the no-slip limit repre- 
sents the long time behavior for dense sprays where 
the entire cluster contained inside V, acts as one 
big drop. Thus, in this limit it is expected that the 
momentum equation will have the following form 

f&K + Nm,Jdz = FCeY - &,A,C,,u~ 

where u, = ud = us. 

(7) 

Assuming F,, = 1Au, and comparing term by term 
equation (7) with the drop momentum equation 

mdd$=&4r(l-1)-fpA C u2 28dDr 

+ nm,FdN(P, + nmd)l (8) 

that has been obtained from a linear combination of 
equations (2) and (4), one concludes that 

F,,, = !k,u,(l - ;c) (9) 

where ti, = Nti. But when u, -+ 0, from equations (7) 
and (8) 

Since F, = 0 for ug = 0, this implies 1 = t. Then using 
equation (lo), the simplest generalization for FT is 

(11) 

because it satisfies both limits ug -+ 0 and u, --, 0. This 
formula implies an effective cloud area of A&u&J, the 
velocity ratio being equal to the non-slip displacement 
gas flux divided by the total gas flux. Also note 
that the choice A = 1 is consistent with the literature 
[4, 5, 7, 93 which commonly represents the effect of 
evaporation (blowing) on drop drag as a reduction in 
the drag coefficient rather than an additional thrust 
term. Thus, the two momentum equations that will 
be solved here are 

dud 1 
md -& = -j PgAdcDU: 

Here Co, is based upon a Reynolds number using u,, 
and the length scale [A&/ud)/K]o.5. 

In general Co depends upon the Reynolds number 
and the evaporation rate as well as RJR,. However, 
here we neglect ‘blockage’ effects and thus Co depends 
only upon Re and lit. In contrast, C,,, depends only 
upon the Reynolds number. In order to assess the 
sensitivity of the model to the drag term, three 
different drag models will be compared. The first one 
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is that of Eisenklam et aI. [43 who correlated Co to 
the drag coefficient in the absence of evaporation as 
follows: 

Cn = cn*_.o/EI + Cpm(Tgn - q&,1. 

Here we take 

(14) 

CD*=0 = 24[1 + 0.0545Re 

+ O.l( 1 - O.O3Re),/Re]/Re (15) 

which is valid for I < Re < 100 [.SJ. A similar model 
has already been used in calculations of the ignition 
of dense sprays in convective flows [6]. 

The second drag coefficient model that will be used 
here is due to Yuen and Chen [7]. The experimental 
results of ref. [7] show, for a variety of liquids, that 
the classical drag expression is satisfied providing one 
uses the following Reynolds number 

Re,, = P&&JR 
P,(T) 

where the denominator is the gas viscosity evaluated 
at 

T, E T,, + (r,, - T,*)/3 

using the formula of Wilke [8]. 

(17) 

Finally, the recent results of the analysis of Cliffe 
and Lever [S] will be used to express Cn as a function 
of both the Reynolds number and the blowing 
number, A, which is defined in ref. [S] as the ratio of 
the radial gas velocity at the drop surface divided by 
u,. Here we generalize this definition of A by also 
taking into account the ratio of the gas density at the 
surface to the external gas density. The drag coefficient 
is given in ref. [S] both in tabular and curve form for 
1 G Re < 100 and 0 < A < 3. These results show 
significant departures both from the Stokes drag 
coefficient and the low Reynolds number solution of 
Dukowicz [9] as a function of Re and A. A curve fit 
of the tabular results of Cliffe and Lever [S] was used 
in the calculations to find the solutions for II, and ud 
from equations (12) and (13). 

Note that the concept of the penetration distance 
is used’here only as a criterion to decide the regime 
in which the cluster evaporates and it is not part of 
the fluid dynamics model which is itself self-contained. 
That is to say that the same equations with the same 
boundary conditions are solved independent of the 
value of L,. 

3. DISCUSSION OF RESULTS 

These equations, along with the liquid phase and 
the other gas phase equations, were solved using the 
Gear integrator. The algorithm for the solution has 
been described elsewhere [2] and thus will not be 
discussed here. We note that in contrast with the 
formulation of ref. [2] which was relevant to non- 
dilute sprays but was questionable for dilute sprays, 
the present model is inherently valid for both dense 
and dilute sprays. 

Interest is focused here on several aspects of drop- 
cluster convective evaporation. First, we want to 
study the sensitivity of the equations to the model 
chosen for Cn, as explained above. Second, we want 
to determine the influence of up upon the evaporation 
of both dense and dilute sprays, Further, we will study 
the influence of T&, Tg and I’s,, upon convective 
evaporation. Finally, we would like to ascertain 
whether a transient, uniform internal-drop-temper- 
ature description is sufficient in the case of dense 
sprays, as different from dilute sprays. Initial evidence 
of this possibility has already been mentioned else- 
where [2], but the study was not conclusive because 
the model was questionable for dilute sprays and thus 
a reliable comparison could not be made. 

Our calculations were performed for n-decane 
(4, = 15.7) and the values used for the the~ophysic~ 
properties are the same as those in Table 1 of ref. [2]. 
Also, throughout the calculations R” = 2 x 10i3cm 
and the characteristic dimension of the cluster is taken 
tobed=lOcm. 

An interesting feature that is an indication of how In all our calculations we have arbitrarily taken 
much the convective flow affects the evaporation of u,O = ui, although any other combination between 
the drops is the extent of external Sow penetration uQ? ~4: and a; could be taken. The physical interpreta- 
inside the cluster. This is described here by a pene- tion of the following results is thus related to the 
tration distance which is estimated in coordinates entrainment by and the relaxation of a cluster of 
fixed with the cluster. In these new Lagrangian evaporating drops introduced into quiescent gases. 

coordinates equation (12) becomes 

ur% = -n dtur/p8 + $1 + p#/(nmd)]AdcDuz 
1 

. 

(18) 

The relaxation distance L,, which is here interpreted 
as a penetration distance, is calculated at each given 
time by identifying the location where u, = 0. When 
time is fixed rit, R, pI and Re are considered constant 
and thus 

The ratio of .I,,, divided by a characteristic cluster 
dimension is an indication of the important phen- 
omenon controlling evaporation. If this ratio is larger 
than unity, evaporation is convection controlled, 
whereas if this ratio is very small compared to unity, 
evaporation is diffusion controlled. Between those 
values there exists an intermediary regime where both 
convection and diffusion are important. 
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FIG. 1. Dependence of the evaporation time upon the air/fuel mass ratio for several drag models and 
several values of the initial relative velocity between the drops and the gases. 

By taking up < uz one would study instead a situation 
where a cluster of drops is introduced into a convective 
flow. Obviously, many possibilities exist and we are 
here studying only one of them. 

In Fig. 1 we display the evaporation time, defined 
as the time when R, = 0.04, vs the air/fuel mass ratio 
for the three. drag models tested here. It is remarkable 
to notice. how close the results are for all the drag 
models over the entire range of 4. In fact, if we had 
chosen a time scale such as to include the results from 
our richest case, 4 = 0.157, the three curves of Fig. 1 
would have been indistinguishable. When the various 
evaporation times are compared for a given 4, the 
maximum uncertainty between the results is 10%. 
This is certainly as good or better than experimental 
uncertainties in the measurement of drag coefficients. 
Thus, we conclude that our model is insensitive to 
the drag model utilized for the calculations. 

Further, in Fig. 1 we can see that similarly to 
quiescent evaporation [ 11, for convective evaporation, 
the evaporation time in the dense-cluster regime is 
larger than that in the dilute-cluster regime. As C$ 
increases an asymptote is reached which corresponds 
to the situation of the isolated drop. Unlike the results 
previously presented that were the extension of a 
model applicable only to non-dilute sprays [2], we 
do not see here an increase in teraP in the dilute cluster 
regime. In fact, when the plot of Fig. 2, which shows 
the penetration ratio vs RI, is interpreted together 
with that of Fig. 1, one can see that as soon as a 
cluster of drops evaporates in the convective-diffusive 
regime or the convective regime, the evaporation time 
will be very close to that of an isolated drop exposed 
to the same initial conditions. This result is rather 
intuitive since, when they are present, convective 
effects always dominate diffusive effects during evap- 
oration. For lower values of u: diffusive-dominated 
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FIG. 2. Variation of the penetration ratio with the residual 
radius of the drops in a cluster, for clusters having various 

air/fuel mass ratios. 

evaporation becomes more important and thus the 
convective-diffusive and convective regimes are 
reached at larger values of 4, as shown in Fig. 3. The 
result is that the evaporation time reaches the isolated 
drop limit for larger values of 4, as shown in Fig. 1. 
We also notice, in agreement with the results of ref. 
[Z], that up is a relatively weak parameter for the 
control of evaporation. However, whereas in ref. [2] 
this conclusion was obtained with a different model 
for non-dilute clusters of drops only, and inferred for 
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FIG. 3 Influence of the initial relative velocity upon the 
penetration ratio during evaporation of drops in clusters for 

three selected air/fuel mass ratios. 

the dilute clusters, here our conclusion holds over the 
entire range of 4. Figure 1 shows that by increasing 
u,” by a factor of 25, tcvap can be decreased by at most 
33%, this maximum being obtained for the most 
dilute cluster situation. In contrast, for the most dense 
cluster situation, t,,,, decreases only by 15% when 
U: is increased by a factor of 25. The following results 
will show why the relative velocity is a weaker control 
parameter for dense clusters when compared to dilute 
clusters. 

Since the time scale for evaporation varies with 4 
and since this is a two-phase problem where the 
interest is focused on the behavior of the evaporating 
drops, it is here relevant to scale the dependent 
variables with the residual radius of the drops rather 
than with time. In other words, starting with given 
initial conditions we look for trends that might be 
the same or different at fixed residual droplet mass. 
Plots of the same quantity vs time, while being 
interesting, would not provide the same insight into 
the physics of the situation. 

The plots of the dependent variables shown in Figs. 
4-7 are useful in building a better understanding of 
the differences between the evaporation of a dense 
cluster and that of a dilute cluster of drops. Figure 4 
shows that the relative velocity of a dense cluster of 
drops decreases faster as a function of R, than that 
of a dilute cluster of drops and Fig. 5 shows that the 
opposite is true for the drop velocity. The reason for 
this is that when a denser cluster of drops moves 
through gases it exposes a greater surface area to the 
flow because the number of drops is larger and thus 
there is a stronger interaction between the gases and 
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FIG. 4. Variation of the relative velocity between drops and 
gases with the residual drop radius for clusters of various 

air/fuel mass ratio. 
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FIG. 5. Variation of the drop velocity with the residual drop 
radius for clusters of various air/fuel mass ratio. 

the drops. The result is a faster relaxation as shown 
in Fig. 4. In contrast, the drop velocity depends on 
the inertia1 effect of the cloud. Because a denser cloud 
has a higher mass it slows down less than a more 
dilute cloud. 

As expected, the Reynolds number variation shown 
in Fig. 6 is similar to the variation of u,. In agreement 
with the results of Dwyer and Sanders [lo] for 
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FIG. 7. Variation of the oxygen/fuel equivalence ratio with 
the residual drop radius for clusters of various air/fuel mass 

ratio. 

isolated drops, we find here that the Reynolds number 
decreases very fast. Table 1 shows, for a selected range 
of cluster drop densities, the residual mass and the 
fraction of the total evaporation time when Re = 1 is 
reached during evaporation. 

Consistent with the results discussed above, the 
oxygen/fuel mass equivalence ratio, displayed in Fig. 
7 vs R 1, is larger at the beginning of evaporation and 
decreases as more fuel vapor is added to the gases. 
For the fuel-rich ($J < 15.7) and the dense cluster 

Table 1. Conditions at Re = 1 for various air/fuel mass 
ratios. Initial conditions: To, = 1OOOK; TiS = 350K, 

Yi*, = 3 X 10-a; up = 2OOcms-’ 

n 

4 (cm-9 We = l)/rcvap m,(Re = 1)/m: 

276.0 4.8 0.50 0.27 
1.57 9.9 x 10” 0.47 0.33 

0.314 5.0 x 104 0.11 0.68 

cases, both the above effect and the fact that the 
relative velocity decreases fast result in a situation 
where the drop evaporates most of its lifetime in a 
fuel-rich environment. At stoichiometric (4 = 15.7) 
and lean (4 > 15.7) conditions the drops evaporate 
during their entire lifetime in an oxygen-rich environ- 
ment. These observations are very important in terms 
of the determination of the ignition time for clusters 
of drops [6]. 

Figure 8 shows the variation of the evaporation 
time with Tia. From the plots displayed on the figure 
it is obvious that both curves present the same trends 

(i.e. Lap decreases with increasing Tza in the lower 
Tia regime followed by an asymptotic behavior as 
Tia increases further); however, for dense clusters the 
curve is shifted towards larger times and a higher 
Tia regime. The shift in the position of the curves as 
one moves to denser clusters is due to the higher 
thermal inertia of the cluster. In the lower Tia regime 
the decrease of tevsp with increase in T’& is intuitively 
well understood because a larger T!& implies a higher 

heat transfer to the drops which enhances evapora- 
tion, thereby reducing the lifetime of the drop. In the 
higher TL regime, because of the larger ambient 
temperature the gas density is lower, and since the 
pressure is the same in all cases, this means that heat 
transfer to the drops will also be the same. This 
explains the asymptotic behavior in the high Tia 
range. 

The results obtained for T!& = 2000K were also 
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used to investigate the evolution of the internal dilute cluster. These plots show that the internal 
temperature profile of the drop for both dense and temperature is transient throughout the drop lifetime 
dilute clusters of drops. In this case Tia - Ti is the for both dense and dilute clusters. However, in the 
largest, thereby inducing the largest initial temper- case of the dense cluster the temperature becomes 
ature gradients inside the drop. The initial drop uniform extremely fast whereas in a dilute cluster 
temperature is arbitrarily assumed uniform. Since this the drops experience a non-uniform temperature 
is not necessarily a solution of the heat conduction relatively for a longer time. For the situations studied 
equation with the associated boundary conditions here the internal drop temperature becomes uniform 
[Z], a non-uniform profile at R, = 0.999 that now in the case of the dense cluster when t/tcvap = 
satisfies both the conduction equation and the boun- LO x lo-’ and the residual mass is 83% whereas 
dary conditions can in fact be considered as the true for a dilute cluster the corresponding numbers 
initial conditions. We notice that the viscosity of the are 2.6 x 10-l and 70%. We conjecture that the 
fuel is here large enough to make the zero-Hill-vortex- reason for this is that the evaporation rate of a 
strength limit acceptable [3] because the ratio of the dense cluster is slower [e.g. for RI = 0.54 the ratio 
characteristic time for circulation to the characteristic C(# = 0.314)/C(d, = 94.2) is 0.561 and since non- 
time for heat-up, [(;c,/(~~/c,,)]/(~,/~,)], is 3.53 x IO- * unifo~ities in fI1 are the result of a competition 
(values of the properties are given in Table 1 of ref. between rate of heat conduction and rate of evapora- 
[Z]). Thus the heating time is independent of the tion, the former now becomes faster than the latter, 
circulation time and the use of the spherically sym- yielding a uniform 0,. Thus, according to these results, 
metric heat conduction equation is justified. What is for the purpose of studying dense clusters of single- 
of interest here is to compare our results with those component drops one could utilize a uniform internal 
of ref. [3] in which it was found using a finite-Hill- drop-temperature model without any penalty in 
vortex-strength model that for an isolated single- accuracy. Further studies must address the question 
component fuel droplet the internal drop temperature of the penalty, if any, for using a uniform internal 
was transient and nonuniform throughout the droplet drop temperature in the case of dilute clusters. 
lifetime. Thus we will be looking here at the relaxation Although our results for dilute clusters present trends 
time for 0, in the case of dense and dilute sprays and different from those of ref. [3] regarding the relaxation 
comparing it with the results of ref. [3]. Because of time for f?, to a uniform condition, in agreement with 
our somewhat artificial initial condition we focus here ref. [3] we found that t?, is transient up to the end of 
only on relative and qualitative behavior. The non- the droplet lifetime. However, the rate of increase in 
dimensional drop temperature is plotted in Fig. 9 vs 6, during the latter part of the drop’s lifetime is rather 
an internal, non-dimensional, drop coordinate at small and sometimes negligible compared to its value 
various residual drop sizes for both a dense and a during the initial portion of droplet evaporation. 
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FIG. 9. Variation of the non-dimensional internal drop 
temperature with a non-dimensional radial coordinate at 
various residual drop sizes for a dense and a dilute cluster 

of drops. 
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FIG. 10. Dependence of the evaporation time upon the initial 
drop temperature for a dense and a dilute cluster of drops. 

Results showing the variation of t,,,,, with Tis are 
presented in Fig. 10 for two air/fuel mass ratios. For 
dense clusters the thermal inertia of the liquid phase 
is larger than in the case of dilute clusters and thus 
it takes longer to heat up and evaporate drops starting 
at the same initial drop temperature. As the normal 
boiling point is approached the two curves converge, 
as expected, because then the evaporation time 
depends basically upon the evaporation rate rather 
than the heating rate. It is worthwhile noting that we 
find here a strong dependence of tevap upon Tis for 
dense clusters in agreement with the results of ref. [2] 
which were obtained with a different convective 
evaporation model, and a weak, linear, dependence 
for dilute clusters. The reason for this is that, in 
contrast to the dense cluster situation, in the case of 
the dilute cluster evaporation is mostly convection 
controlled or convection-diffusion controlled and 

thus tcvap is close to the isolated drop value. 
In Fig. 11 we display results showing the variation 

of the evaporation time with YF,, for dense and dilute 
clusters of drops. For the dense cluster case 
(f# = 0.314), Y$_ is increased up to the value where 
saturation is encountered at the initial condition 
whereas for the dilute cluster case YE,, is increased 
until n becomes of the order of 1 cm-‘. Again, in 
agreement with our previous results [2] obtained 
for non-dilute sprays with a different convective 
evaporation model, we find here a linear decrease in 
t evap with increasing YF,.!,.. This is easily understood 
since for fixed #, as Yg,. increases, n decreases, so 
that for the same initial temperature and velocity 
conditions the thermal mass of the cluster is lower. 
Since evaporation occurs mostly in the diffusion- 
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FIG. 11. Dependence of the evaporation time upon the initial 
mass fraction of fuel vapor in the gas phase for a dense and 

a dilute cluster of drops. 

controlled regime according to the results of Figs. 1 

and 2, L,, is shorter. The situation is different for 
dilute sprays where evaporation occurs mostly in the 
conv~tion-controlled regime and thus the evapora- 
tion time is close to the individual drop value. For 
this reason, tcvap is rather insensitive to Y&, for dilute 
clusters. 

4. SUMMARY AN0 CONCLUSIONS 

The model of convective drop-cluster evaporation 
developed here is inherently valid for both dense and 
dilute clusters and thus it is well suited for the 
comparative study of droplet evaporation in these 
two different confi~rations. As the air/fuel mass ratio 
increases from values for very dense to those for very 
dilute clusters, several distinctive evaporation regimes 
are identified. Very dense clusters were found to 
evaporate in a diffusion-controlled regime whereas 
very dilute clusters were found to evaporate in a 
convection~ontrolied regime. Between these two 
regimes there is a convection-diffusion regime where 
both phenomena are important in determining the 
lifetime of the cluster. These results were found to be 
insensitive to the drag model used. In fact, results 
obtained with three different drag models showed less 
than 10% variation in the evaporation time. 

A parametric study has been performed in order 
to identify important parameters controlling drop- 
cluster evaporation in different regimes. Thus, it was 
found that the initial relative velocity between the 
gases and drops is a weak parameter both in the 
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dilute and dense regimes. Furthermore, it has been 
found that the initial ambient surrounding temper- 
ature is a strong control parameter in the lower values 
of the T!& regime and a weak control parameter in 
the higher values of the Tta regime. Although the 
variation of the lifetime of the cluster with changes in 
initial ambient temperature is the same for dense and 
dilute clusters, because of the larger thermal inertia 
of the dense cluster, the corresponding curve is 
substantially shifted towards larger times and higher 
temperatures. Moreover, the study of the sensitivity 
to variations in the initial ambient temperature was 
also used to assess the duration of the relaxation time 
for the internal droplet temperature to a uniform 
condition. Given uncertainties due to the fact that we 
started with an arbitrary, uniform internal drop 
temperature that was not a solution of our equations, 
and that very shortly became nonuniform as a result 
of now satisfying our equations and boundary condi- 
tions, and that what we followed was the relaxation 
of this tem~rature profile, our conclusions are that 
the relaxation time is short for dilute clusters and 
very short for dense clusters. However, transients 
persist during most of the drop lifetime. 

The initial drop temperature has been found to be, 
for dense clusters, a strong control parameter in the 
lower TiB regime and a somewhat weaker parameter 
in the higher Tk regime. In contrast to dense clusters, 
for dilute clusters the initial drop temperature is a 
very weak parameter in the entire regime of interest. 
As the initial drop temperature approaches the normal 
boiling point both curves for dense and dilute curves 
converge. These effects are strongly related to the 
thermal inertia of the spray. 

Similarly, it has been found that for a fixed air/fuel 
mass ratio, the evaporation time of a cluster of drops 
is very insensitive to the initial mass fraction of fuel 
vapor in the ambient gases if the cluster is dilute and 
that the evaporation time decreases linearly with 
increasing YgYII for dense clusters. The latter effect is 
due to the fact that as (b is fixed and Y& increases, 
less liquid fuel is present initially in the cluster. 

To summarize, for dense sprays the control para- 
meters are in order of importance: the initial drop 

temperature, mostly in the low regime; the initial 
surrounding gas temperature in the low regime; the 
initial mass fraction of fuel vapor in the gas phase; 
and the initial relative velocity between drops and 
gases. In contrast, for dilute sprays the control para- 
meters are in order of importance: the initial temper- 
ature of the surrounding gas in the very low regime; 
the initial relative velocity between drops and gases; 
the initial drop temperature; and the initial mass 
fraction of fuel in the gas phase. 
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DETAILS DE L’EVAPORATION CONVECTIVE DE GRAPPES DENSES OU DILUEES 
DE GOUTTES 

R&umGUn meddle global d&ivant l’evaporation convective de grappes denses ou dilubs de gouttes a 
ttb formu & partir des premiers principes. Le volume de la grappe et le nombre de gouttes dans une grappe 
sent fix&s et les gouttes ne se dkplacent pas les unes par rapport aux autres. L,e mod&le a &:tt essay& pour 
trois mod*les diff&ents de train& et il montre une sensibilid int&ieure ii 10% dans Ie calcul de la dur& 
de vie de la gouttelette. Une Ctude paramktrique est conduite et les r&&tats montrent que le paramitres 
de contrBle sont t&s diffkrents en ordre d’importance pour les grappes denses et dilu&es. La vitesse initiale 

relative entre gouttes et gaz est un paramktre peu important dans le domaine 40-1000 cm s”’ ‘. 
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DIE EINZELHEITEN DER OBERFLACHENVERDAMPFUNG VON DICHTEN UND 
GEL&TEN TROPFENVERBANDEN 

Znaammenfassung-Ausgehend von den Grundgleichungen wurde ein umfassendes Model1 zur Be- 
schreibung der OberIIiichenverdampfung von dichten und gel&en Tropfenverbiinden formuliert. Das Ver- 
bundvolumen und die zahl der tropfen in einem gegebenen verbund sind fest, die tropfen bewegen sich 
relativ zueinander nicht. Das Model1 wurde mit drei verschiedenen Reibungsmodellen getestet, wobei sich 
ein EinfluB von weniger als 10% auf die vorausberechnete Lebensdauer der Tropfen ergab. Eine sorgfaltige 
Parameterstudie wurde durchgeftihrt. Die Ergebnisse zeigten, da6 die den Vorgang kontrollierenden 
Parameter fiir dichte und geliiste Verbiinde sehr unterschiedlich hinsichtlich ihrer Wichtigkeit sind. Die 
Anfangs-Relativgeschwindigkeit zwischen den Tropfen und dem Gas ist im Bereich 4&1OOOcm s- ’ von 

geringem EinfluB. 

OCOSEHHOCTM KOHBEKTMBHOI-0 MCHAPEHMg IIJIOTHbIX H PA3PE)KEHHbIX 
KJIACTEPOB KAI-IEJIb 

AHHOTnwa-C~OpMynUpOBaHa o6o6memran CXCMa KOIiBCICTHBHOrO BCIlapCHHI IlJIOTHbIX W pa3pGKCH- 
HbIX KJIaCTCpOB KaIICJIb. 06beM KnaCTepa I( KOnWteCTBO KalleJlb B HeM 3anaHb1, KaIlJU4 He,,Ol,BHXHbI 

oTHockfTenbti0 npyr npyra. TaKan cxehta npoBepeHa nm Tpex pasnevebrx MoneneP conpoTeBnesen, 

llOKa3aH0, VT0 omw6ra npu OUCHKC BPcZMCHB XWi3HW KNIJIH COCTaBJIllCT MCHCC 1o”h. Pe3ynbTaTbI IIOKa- 

3bIBaIOT, ST0 OIlpenenKlOUiie IlapaMCTpbI, KOTOPbIC C)‘lUCCTBCHHbI JIJlll LIPHHOrO IlpOUCCCa, pa3JIWIHbl IlO 
IlOpWIKy BWIRWiHbl lIJlll IlJlOTHbIX U pa3pCWKeHHbIX KJlaCTCpOB. Ha’iaJlbHaK OTHOCHTCnbHaSI CKOPOCTb 


